In vivo transcription of a progesterone-responsive gene is specifically inhibited by a triplex-forming oligonucleotide.
نویسندگان
چکیده
Oligonucleotides provide novel reagents for inhibition of gene expression because of their high affinity binding to specific nucleotide sequences. We describe a 38 base, single-stranded DNA that forms a triple helix or 'triplex' on progesterone response elements of a target gene. This triplex-forming oligonucleotide binds with a Kd = 100 nM at 37 degrees C and physiological pH, and blocks binding of progesterone receptors to the target. Furthermore, it completely inhibited progesterone receptor-dependent transcription in vitro. To approach in vivo conditions, triplex-forming oligonucleotides were tested in cell transfection studies. The derivation of the oligonucleotides with cholesterol enhanced their cellular uptake and nuclear concentration by at least four-fold. The cholesterol-derivatized triplex-forming oligonucleotide specifically inhibited transcription of the PRE-containing reporter gene in cells when applied to the medium at micromolar concentrations. This is the first demonstration of steroid-responsive gene inhibition by triplex formation and joins the growing body of evidence indicating that oligonucleotides have therapeutic potential.
منابع مشابه
ساختار مولکول DNA سه رشته ای: اهمیت و کاربردهای پزشکی آن
Back in 1957, when investigators produced a triple-stranded form of DNA while studying synthetic nucleic acids, few researchers paid much attention to the discovery. However, triplex DNA was never entirely forgotton and especially since 1987 its structural and functional importance in biological systems as well as its medical applications and therapeutic potentional have been extensively studie...
متن کاملRecruitment of transcription factors to the target site by triplex-forming oligonucleotides.
Triplex-forming oligonucleotides (TFOs) are generally designed to inhibit transcription or DNA replication but can be used for more diverse purposes. Here we have designed a hairpin-TFO able to recruit transcription factors to a target DNA. The designed oligonucleotide contains a triplex-forming sequence, linked through a nucleotide loop to a double-stranded hairpin including the SRE enhancer o...
متن کاملAccessibility of nuclear DNA to triplex-forming oligonucleotides: The integrated HIV-1 provirus as a target (oligonucleotide–psoralen conjugateyDNA accessibilityycompetitive PCRyantigene oligonucleotidesyHIV)
The control of gene transcription by antigene oligonucleotides rests upon the specific recognition of doublehelical DNA by triplex-forming oligonucleotides. The development of the antigene strategy requires access to the targeted DNA sequence within the chromatin structure of the cell nucleus. In this sudy we have used HIV-1 chronically infected cells containing the HIV provirus as endogenous g...
متن کاملUnderstanding oligonucleotide-mediated inhibition of gene expression in Xenopus laevis oocytes.
Triplex-forming oligonucleotides (TFOs) modified with N,N-diethylethylenediamine can inhibit the expression of a reporter plasmid in Xenopus oocytes if the triplex is preformed prior to injection while unmodified oligonucleotides cannot. Here we show that merely forming a triplex in a reporter plasmid does not disrupt transcription, but when TFOs are targeted to sites within the transcribed reg...
متن کاملA triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional repressor via inhibition of NF kappa B binding to interleukin-2 receptor alpha-regulatory sequence.
Oligonucleotide-directed triplex formation within upstream regulatory sequences is envisioned as a potential tool for gene inhibition. However, this approach requires that triple helix-forming oligonucleotides are chemically modified, so that the triplex is stable under physiological conditions. Here, we have compared several chemical modifications of an oligonucleotide, targeted to a natural 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 21 12 شماره
صفحات -
تاریخ انتشار 1993